# **TIGS: An Inference Algorithm for Text Infilling** with Gradient Search Dayiheng Liu<sup>1</sup>, Jie Fu<sup>2</sup>, Pengfei Liu<sup>3</sup>, Jiancheng Lv<sup>1</sup> **College of Computer Science, Sichuan University** Mila, IVADO, Polytechnique Montreal School of Computer Science, Fudan University

## Introduction

### **Text Infilling:**

- ✓ Sequence missing value reconstruction (e.g., for damaged or historical documents)
- ✓ Lexically constrained sentence generation

## Methodology

#### Algorithm 1 TIGS algorithm

Input: a trained seq2seq model, a pair of text infilling data  $(\boldsymbol{x}, \boldsymbol{y}^{\mathbb{B}})$ , output length m. **Output:** a complete output sentence  $y^*$ .

### ✓ Fill in the blanks (e.g., Lyrics and poetry generation)

Input: Hey, how about going for a few beers after dinner?

Ground Truth You know that is tempting but is really not good for our fitness.

Seq2seq + Left-to-Right Beam Search You know that I like it very much (let's for our fitness .

Seq2seq (backward) + Right-to-Left Beam Search You know that not going, it is really bad for our fitness.

Challenge: given a well-trained sequential generative model, generating missing symbols conditioned on the context is challenging for existing greedy approximate inference algorithms.

### **Main Contribution**:

• We propose an *iterative inference algorithm* based on *gradient search*, which could be the first inference algorithm that can be broadly applied to any neural sequence generative models for text infilling tasks.

```
Initialize the infilled word set \hat{y} and initialize y^* by infill-
ing y^{\mathbb{B}} with \hat{y}.
Initialize \hat{y}^{emb} by looking up the word embedding matrix
\mathbb{W}^{emb}
for t = 1, 2, ..., T do
    for j = 1, 2, ..., |\mathbb{B}| do
         O-step:
         Update \hat{y}_{j}^{emb} with gradient \nabla_{\hat{y}_{j}^{emb}} \mathcal{L}(x, y^{*})
         P-step:
         Set S = \operatorname{nearest-K}_{y_k \in \mathcal{V}} dist(\hat{y}_j^{emb}, y_k^{emb})
         Set \hat{y}_j = \arg \min \mathcal{L}_{NLL}(\boldsymbol{x}, \boldsymbol{y}^*)
                           \hat{y}_i \in S
     end for
     Update y^* with \hat{y}_i
     if convergence then
         break
     end if
end for
return y^*
       \mathcal{L}_{NLL}(x, y^*)
                                NLL Loss
                                                                                Word embedding
                                                                     \bigcirc
```

Extensive experimental comparisons show the effectiveness and efficiency of the proposed method on *three different text infilling tasks*, compared with *five* state-of-the-art methods.

## Experiments

#### Three Datasets:

DailyDialog

**Chinese Poetry** 

• Amazon product reviews

Input: What is the weather like today?

Six settings:

✤ Mask ratio: 25% 50% 75%

Mask strategy: random middle

Ground Truth It stops snowing , but there's a bit wind .

Mask strategy: Random Mask ratio: 75% \_\_ \_\_ snowing \_\_ \_\_ \_\_ \_\_ wind .

Mask strategy: Random Mask ratio: 50% It \_\_\_\_\_ snowing \_\_\_ but \_\_\_\_\_ bit \_\_\_.





space

### **Partial Results**

Output

| Datasets | Metrics | Methods                                                                                                                       | r=25%                                                                         |                                                                                                 | r=50%                                                                                         |                                                                                               | r=75%                                                                                |                                                                                               |
|----------|---------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|          |         |                                                                                                                               | Random                                                                        | Middle                                                                                          | Random                                                                                        | Middle                                                                                        | Random                                                                               | Middle                                                                                        |
| Dialog   | NLL     | Seq2Seq-f<br>Seq2Seq-b<br>Seq2Seq-f+b<br>BiRNN-BiBS<br>BiRNN-GSN<br>Mask-Seq2Seq<br>Mask-Self-attn<br>TIGS (ours)             | 3.573<br>3.657<br>3.397<br>3.248<br>3.239<br>3.406<br>3.567<br><b>3.143</b>   | 3.453<br>3.558<br>3.321<br>3.279<br>3.270<br>3.368<br>3.524<br><b>3.164</b>                     | 3.653<br>3.911<br>3.491<br>3.268<br>3.219<br>3.434<br>3.694<br><b>3.050</b>                   | 3.316<br>3.542<br>3.213<br>3.294<br>3.199<br>3.347<br>3.466<br><b>3.030</b>                   | 3.328<br>3.713<br>3.233<br>3.245<br>3.086<br>3.279<br>3.509<br><b>2.920</b>          | 2.975<br>3.421<br>2.932<br>3.217<br>2.938<br>3.177<br>3.205<br><b>2.764</b>                   |
|          | BLEU    | Template<br>Seq2Seq-f<br>Seq2Seq-b<br>Seq2Seq-f+b<br>BiRNN-BiBS<br>BiRNN-GSN<br>Mask-Seq2Seq<br>Mask-Self-attn<br>TIGS (ours) | 0.780<br>0.834<br>0.837<br>0.860<br>0.828<br>0.894<br>0.867<br>0.858<br>0.895 | 0.823<br>0.861<br>0.862<br>0.881<br>0.852<br>0.892<br>0.892<br>0.887<br>0.864<br>0.864<br>0.894 | 0.621<br>0.670<br>0.675<br>0.692<br>0.661<br><b>0.726</b><br>0.719<br>0.719<br>0.719<br>0.724 | 0.700<br>0.737<br>0.739<br>0.751<br>0.725<br>0.752<br>0.752<br>0.769<br>0.743<br><b>0.754</b> | 0.552<br>0.584<br>0.584<br>0.594<br>0.575<br>0.600<br>0.614<br><b>0.623</b><br>0.596 | 0.601<br>0.640<br>0.627<br>0.643<br>0.626<br>0.643<br><b>0.662</b><br>0.643<br>0.643<br>0.644 |

Mask strategy: Middle Mask ratio: 25% It stops snowing , \_\_\_\_ a bit wind .

#### Seven baselines:

UniRNN + left-to-right beam search UniRNN + right-to-left beam search  $\clubsuit$  UniRNN + f + b

**H** Birnn-Bibs Birnn-GSN Mask-Seq2Seq Mask-Transformer

Our code and data are available at https://github.com/dayihengliu/Text-Infilling-Gradient-Search

